ぱたへね!

はてなダイアリーはrustの色分けができないのでこっちに来た

GCPでTPUを動かしたメモ

GCPでTPU動いたのでメモ

準備

ここ読みながらTPUを起動する。ctpu upの前に、ブラウザのコンソールからSTARTさせないと動かなかった。(TPUにチェックを入れて緑色になっただけだと動いていなかった。)

https://cloud.google.com/tpu/docs/quickstart?hl=ja

途中でshellが変わって補完が効かなくなったのがつらい。まだよくわからない仕組みで動いている。

ちなみに、TPU使うだけならGPUインスタンスの契約は不要。GPU無しのVMとTPUだけ契約すればOK。TPUをプリエンプティブにするとそんなにお金はかからない。12月中はそこそこ遊んだけど、まだ10ドルもかかってないです。

ソース

TensorFlowが良くわからないのでKerasで。

import os
import tensorflow as tf
from tensorflow.contrib import tpu
from tensorflow.keras.datasets import mnist
from tensorflow.keras import layers
from tensorflow.keras import models
from tensorflow.keras.utils import to_categorical

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# (60000, 28, 28)
#print(train_images.shape)

# (10000, 28, 28)
#print(test_images.shape)

network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28*28,)))
network.add(layers.Dense(10, activation='softmax'))

# loss function
# optimizer
# metrics

network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

# normalization
train_images = train_images.reshape((60000, 28*28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28*28))
test_images = test_images.astype('float32') / 255

# one hot encoding
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

tpu_grpc_url = tf.contrib.cluster_resolver.TPUClusterResolver(tpu=[os.environ['TPU_NAME']])

strategy = tf.contrib.tpu.TPUDistributionStrategy(tpu_grpc_url)

tpu_model = tf.contrib.tpu.keras_to_tpu_model(
    network,
    strategy=strategy
)

tpu_model.fit(train_images, train_labels, epochs=5, batch_size=128)
test_loss, test_acc = tpu_model.evaluate(test_images, test_labels)

tpu.shutdown_system()


# test_acc: , 0.9786
print("test_acc: ,", test_acc)

結果

natsutan0@emiru:~/myproj/keras_book/chap2$ python3 mnist_tpu.py
WARNING:tensorflow:From /home/natsutan0/.local/lib/python3.5/site-packages/tensorflow/python/ops/resource_variable_ops.py:434: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be rem\
oved in a future version.
Instructions for updating:
Colocations handled automatically by placer.
2018-12-25 02:02:07.817964: W tensorflow/core/distributed_runtime/rpc/grpc_session.cc:354] GrpcSession::ListDevices will initialize the session with an empty graph and other defaults because the session has no\
t yet been created.
WARNING:tensorflow:tpu_model (from tensorflow.contrib.tpu.python.tpu.keras_support) is experimental and may change or be removed at any time, and without warning.
2018-12-25 02:02:07.834462: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2500000000 Hz
2018-12-25 02:02:07.834760: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x55f1d962b4d0 executing computations on platform Host. Devices:
2018-12-25 02:02:07.834798: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): <undefined>, <undefined>
Epoch 1/5
WARNING:tensorflow:From /home/natsutan0/.local/lib/python3.5/site-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py:302: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be remov\
ed in a future version.
Instructions for updating:
Use tf.cast instead.
WARNING:tensorflow:From /home/natsutan0/.local/lib/python3.5/site-packages/tensorflow/python/ops/math_ops.py:3064: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future v\
ersion.
Instructions for updating:
Use tf.cast instead.
WARNING:tensorflow:Cannot update non-variable config: epsilon
60000/60000 [==============================] - 8s 140us/sample - loss: 0.2546 - acc: 0.9275
Epoch 2/5
60000/60000 [==============================] - 4s 69us/sample - loss: 0.1038 - acc: 0.9697
Epoch 3/5
60000/60000 [==============================] - 4s 71us/sample - loss: 0.0680 - acc: 0.9797
Epoch 4/5
60000/60000 [==============================] - 4s 71us/sample - loss: 0.0486 - acc: 0.9853
Epoch 5/5
60000/60000 [==============================] - 4s 71us/sample - loss: 0.0365 - acc: 0.9890
10000/10000 [==============================] - 4s 355us/sample - loss: 0.0795 - acc: 0.9751
test_acc: , 0.9751
natsutan0@emiru:~/myproj/keras_book/chap2$

TPUが起動していない時はTPU無いで~って怒られる。それがでなくなったのでなんか動いてると思う。 さすがにこの規模だとCPUに比べて気持ち速いレベルです。もうちょっと大きなモデルでやってみたい。